A Drunk History of Time: The Einstein, Bergson, Whitehead Debates

Is the flow of time a “stubbornly persistent illusion,” a mere psychological mirage, as Albert Einstein held? Or is it the very essence of all psychical life and material things alike, as Henri Bergson argued? Might there be an equally scientific rendering of relativity that does not force us to deny our lived experience, as Alfred North Whitehead preferred? Whose time is it? Join us for this drunk history lesson about the epochal clash between these three geniuses to find out.

*Errata: At 30:29, I misspoke: Einstein’s train thought experiment is, of course, in reference to the special, not the general theory of relativity. But Einstein first articulates it in a text meant for the general public that summarizes both theories. At 34:08, I misspoke again: Of course, since 2014, Russia has claimed Crimea as its own.

From pedagogy to cosmology with A. N. Whitehead

A student in my course this semester asked a great question recently: “How is Whitehead’s cosmology related to his pedagogy?” Many commentators find it strange that Whitehead decided to include (and indeed to conclude) his book Aims of Education with a few chapters on relativistic space and time. What on earth does his alternative interpretation of Einstein’s relativity theory have to do with education?

Whitehead’s critique of modern education is that it tends to produce well-informed experts with atrophied feeling, deadened receptivity to beauty, and less capacity for animated and imaginative thought than was present when students first enter school as untutored children. In other words, our schools have been designed to fill the active minds of children with inert ideas, eventually leading to specialized knowledge in some narrow field in which they will eventually seek employment. Narrowness wins out over breadth and depth.

Of course, Whitehead does not argue that educational systems cease teaching important knowledge. He insists that these ideas, whether general or specialized, never be handed over to children in frozen, shrink-wrapped form, but rather in such a way that they can be immediately utilized, tested, and recombined in fresh ways. If the child does not, from the first, experience education as the joy of discovery, then mental dryrot sets in and the future vitality of human culture is endangered. Whitehead: “Education with inert ideas is not only useless: it is, above all things, harmful” (AoE, 1-2).

How is Whitehead’s rather common critique of modern industrial/factory-style education related to cosmology? Whitehead’s critique of Einstein has to do with the way an a priori geometrical scheme, entirely disconnected from experience, is made the foundation of the physical world. Whitehead says that “the most extraordinary fact of human life is that all beings seem to form their judgements of spatial quantity according to the same metrical system” (AoE, 160-161). But, he adds, this is “only true within the limits of accuracy obtained by human observation.” Einstein’s contribution was to make science inescapably aware of the fact that “diverse spatio-temporal systems of measurement are relevant to the behavior of things” (161). But how do these diverse metrical systems hang together as part of a common external world? Einstein approached this problem via a mathematical conception of space and time as a single continuous manifold. But again, how is his “space-time continuum” related to human experience? Nobody lives in such a continuum. Rather, we live “in a set of fragmentary experiences” (AoE, 162). Whitehead articulated what he called the “method of extensive abstraction” so as to reconnect the fragmentary worlds of our experience to a common world of mathematical conceptions.

One of the purposes of education is to allow human beings, from unique backgrounds and with fragmentary perspectives and special talents, to join in the common project of culture-formation. Whitehead’s critique of standard renderings of relativity theory is that these renderings take the unity of a mathematical abstraction as fundamental and given while reducing away as illusory the concrete experiences from which all mathematical abstraction derives. This is akin to treating the conveyance of information as of primary importance in education, rather than the growth of human beings. Whitehead protests against the idea of an objective, pre-given space-time continuum for the same reason he protests again the idea of an objective, pre-given encyclopedia of knowledge. “Students are alive, and the purpose of education is to stimulate and guide their self-development” (AoE, v).

The aim of education, like the aim of Whitehead’s critique of Einsteinian relativity, is to find a way to lift “the broken limited experiences” of our individual lives, to inspire us each from where we stand to contribute in our unique ways to the sustenance of “that connected infinite world in which in our thoughts we live” (AoE, 164). Whitehead concludes Aims of Education with the lines “Our problem is, in fact, to fit the world to our perceptions, and not our perceptions to the world” (165). In other words, whether in theories of space and time or in theories of education, we must guard against the deadly temptation to make idols out of our abstractions. The world is a community of experiences. It has, we hope, a uniform texture, a texture approached by the most advanced thinking activity a culture can produce. Abstractions are not the enemy, they are of vital importance to civilized life! But when we neglect the process by which we arrive at them by building up from concrete particular experiences, we make a terrible mess of the whole human endeavor, and indeed, of the world itself. We arrive at the abstract uniformity of the texture of experience not through violently explaining away the uniqueness of each of our points of view. Rather, we start where we are as living and aspiring organisms and, keeping our feet firmly placed on the ground, reach from there to the stars.

Whitehead’s Radically Empirical Theory of General Relativity

“The doctrine of relativity affects every branch of natural science, not excluding the biological sciences. . . . Relativity, in the form of novel formulae relating time and space, first developed in connection with electromagnetism. . . . Einstein then proceeded to show its bearing on the formulae for gravitation. It so happens therefore that owing to the circumstances of its origin a very general doctrine is linked with two special applications.”
–Whitehead (The Principle of Relativity, 3).

One of the biggest surprises for me upon reading Auxier and Herstein’s book The Quantum of Explanation was learning that Whitehead’s theory of extension (or “mereotopology” as it has come to be called) has been taken up by computer scientists working in the field of robotic vision (see for example the work of Ian Pratt-Hartmann).

“It is a widely acknowledged fact in this sub-discipline that Alfred North Whitehead’s work on extension is foundational for their enterprise. Our experience has been that Whitehead scholars are simply astounded to learn of this fact. Yet we should have expected and even predicted such a connection” (QE 90).

Guilty as charged. While I think I got things mostly right in section 3.2 of my dissertation (“From Geometric Conditions of Possibility to Genetic Conditions of Actuality”), the promising application of Whitehead’s topological scheme to robotic vision certainly brings this aspect of his project into sharper focus for me. As a radical empiricist, Whitehead was searching for a formal account of our concrete experience of projectively related extensa. We are finite creatures with limited sensory organs and processing capacity. We do not experience the world of spatial relations in terms of infinitesimal points or the geometrical schemes built up from such points. Rather, what we encounter in our immediate experiential field are the intuitive whole-part relational structures formalized by non-metrical projective geometry.

Following Einstein’s articulation of the special and general theories of relativity (in 1905 and 1916, respectively), and his problematic “mono-metric” identification of a 4-D geometrical model with physical space-time*, Whitehead pursued his theory of extension with renewed urgency. Somehow, the uniformity of spatial geometry had to be preserved, else scientific measurement would become impossible. Einstein did not appear to realize that allowing the contingent warping of space by massive objects undermined the fundamental logical requirements of measurement: that space have a necessary and universal structure (or, as Auxier and Herstein put it, “we must have a standard unit of spatial comparison for conjugacy…and standard(s) of spatial projection” so as to bring this unit into comparison with whatever we are trying to measure [QE 102]). By collapsing the difference between physical space and his favored geometrical scheme, Einstein made the structure of spatial geometry contingent upon randomly arrayed masses.

“We must know the complete distribution of matter and energy in the universe prior to knowing its geometry. But we must have a comprehensive grasp of this geometry in order to discover this distribution. As Whitehead pointed out, with General Relativity as our theory of space and gravity, we are saddled with a situation where we must first know everything before we can know anything” (QE 104).  

Einstein’s “mono-metric” model has been one of the most successful in the history of science. But because of the unexpected observations of the rotational velocity of galaxies and of cosmic inflation rates, its theoretical supremacy has begun to be seriously questioned. Some astrophysicists have attempted to save the theory by inventing “dark matter” and “dark energy” to explain the missing mass that would bring observations back into agreement with Einstein’s theory. Auxier and Herstein refer to these inventions as “an especially unhappy piece of nonsense” (QE 20). I’m sympathetic, but I wouldn’t go quite that far. To my mind, these invented entities are akin to the epicycles of Ptolemaic astronomy. In other words, these exotic and invisible forms of mass/energy (which supposedly compose ~96% of the universe) are postulated ad hoc in an attempt to “save the appearances” (as ancient astronomers used to say). Ancient astronomers were tasked by Plato with explaining the seemingly erratic motion of the planets in terms of a theoretical model composed only of uniform circular motions. When new planetary observations conflicted with the model, more circles were added (epicycles) to bring the model back into alignment with appearances. One view of science is that it is just about refining existing theoretical presuppositions to fit new observations, gradually approaching a perfect identity between model and reality. In this sense, the addition of epicycles to match observations could continue indefinitely. After all, Ptolemy’s geocentric model was more accurate than Copernicus’ heliocentric model (which itself still required epicycles until Kepler and Newton updated his math). The geocentric model is still accurate enough that modern planetarium projectors (invented in the 1920s by a company in Jena, Germany) continue to utilize it, reproducing Ptolemy’s deferents and epicycles with their internal gears and motors (see also).


But as Karl Popper taught us, scientific theories must be subject to empirical falsification. The eternal circular orbits of Ptolemy’s model fall out of phase with the long-term evolution of planetary orbits, while the (updated) heliocentric model accommodates this evolution well. As Thomas Kuhn, another great philosopher of science, taught us, the history of science is not just about the gradual refinement of old theories to fit new observations in an asymptotic convergence of model to reality; rather, this history is also characterized by periods of revolutionary crisis as aging paradigms are supplanted by deeper, wider, more elegant and inclusive explanatory perspectives. Einstein’s genius was to bring the reigning Newtonian theory of gravity into alignment with Maxwell’s theory of electromagnetism. A deeper theory of space was born. But in a sense, despite many other successful observational predictions, empirical falsification is exactly what happened to Einstein’s gravitational theory when it failed to accurately predict the observed rotational velocity of galaxies. However, because this darling model had made a number of other accurate predictions, and because no widely accepted alternative paradigm was on hand, astrophysicists decided to fudge the numbers by inventing new free parameters, new epicycles, to bring the theory back into alignment with observations. Appearances were thereby saved, but at the cost of conjuring into existence an entire universe (or 96% of one, at least) of cold and dark, that is, unobservable, matter/energy.

Even though he did formulate a “bimetric” alternative in 1922 (QE 109), Whitehead’s problem is not with Einstein’s model. This isn’t a “scientists have been wrong before, so why should we trust them now?” argument. Science is about modeling. In some sense, scientific models are always wrong. That’s the name of the game, after all: build a model and throw it against reality until it breaks. Then study why it broke until you find a new model that doesn’t break as quickly. Gradually, more robust, inclusive models emerge. Rather, Whitehead’s problem is with the philosophically naive “model-centrism” that leads scientists to equate their favored model with reality in a dogmatically literalistic way. We should never assume the reigning physical models of the universe offer a final account of the way things are (especially when today’s two most successful models, relativity and quantum theory, remain irreconcilable). Science is not ontology: science is a method of inquiry involving the making and breaking of toy models.

The dogmatic equation of a favored geometrical model with physical reality not only undermined the logical basis of measurement, it led Einstein to dismiss our concrete experience of an irreversible flow of time as nothing more than a “stubbornly persistent illusion.” This is Whitehead’s famous “fallacy of misplaced concreteness” writ large. Einstein’s unquestioned commitment to the classical “spectator theory of knowledge” prevented him from grasping the profoundly relational implications of his new theory of space. He upheld the old Galilean-Cartesian view of a bifurcated Nature, construing our consciousness as somehow external to a cosmos that we can only ever confusedly experience. Whitehead offers an alternative, fully relational epistemology and ontology that re-embeds experience in the cosmos: we are creative participants in a cosmogenetic relational nexus.  

Instead of rushing to eliminate experience from our understanding of a relativistic (or relational) reality, Whitehead carefully examined the hidden epistemic presuppositions and metaphysical requirements of Einstein’s more specific application of relativity to the physics of light and gravitation. The result of his examination was eventually assembled in Process and Reality as the fourth category of explanation, a truly general principle of relativity: “it belongs to the nature of a ‘being’ that it is a potential for every ‘becoming'” (PR 22). Obviously, the importance of Whitehead’s fourth category of explanation (of which there are 26 others) can only be understood within the total gestalt of his categoreal scheme (which includes the category of the ultimate: Creativity; eight categories of existence, among which the most important are eternal objects and actual occasions; and nine categories of obligation). Whitehead’s categoreal scheme is laid out in Part I of Process and Reality as something like an opening credit roll listing the conceptual dramatis personae who, in Part II, will take the stage to exemplify their adequacy. But I’m not going to run through the whole dress rehearsal right now (for a helpful exegesis of Whitehead’s first four categories of explanation, see pgs. 108-110 of QE). Suffice it to say that Whitehead’s principle of relativity expresses the truth that everything co-exists in a web of relatedness, whether actually or potentially. 

Auxier and Herstein:

This is the principle that Einstein and his devotees have abandoned: not the mathematical expression of their physical model; that model is itself only an application of what has become the standard dogma of orthodox cosmology, with its narrowly defined approach to the interpretation of a truncated representation of experience. Rather, physical cosmology has left behind the full principle of relativity and its unqualified commitment to the incurable relatedness of the real. That abandonment comes in the truncation of experience at the root of their largely unexpressed theory of experience [i.e., the theory of the bifurcation of Nature]. For one cannot have a universal principle of relativity—applicable to all that is real—unless one takes experience in its real, relational totality. Experience—both actual and potential—is exactly the kind of reality that falls under the principle of relativity. One cannot take the metaphysical principle of relativity seriously unless one is a radical empiricist” (QE 110). 

In The Quantum of Explanation, Auxier and Herstein have brilliantly succeeded in elucidating the features of a radically empirical cosmology. As Whitehead reminds us early and often in Process and Reality, the purpose of philosophy is not to explain away the existence of the concrete by reduction to the abstract, but to explain the emergence of abstraction from concretion. The proper questions are: how does concrete fact participate in general form and how are general forms exemplified in concrete facts?

For a longer discussion of Whitehead’s radical empiricism a.k.a. relational realism, see my essay “Retrieving Realism: A Whiteheadian Wager.”

*It has been brought to my attention that the matter of whether Einstein thought the physics of gravitation is reducible to the geometry of space-time is not so clear cut. See for example: “Why Einstein did not believe that general relativity geometrizes gravity” by Lehmkuhl. The research continues… 

[Space-Time in an Ontology of Organism] The Relevance of Whitehead’s Philosophy of Organism to Contemporary Scientific Cosmology

Space-Time in an Ontology of Organism

“The metrical properties associated with space-time should not be defined a priori, but should characterize the pattern of the environment that is inseparable from [the endurance of organisms].” -Stengers141


Whitehead’s amendments to the general theory of evolution follow from his desire to re-construct the theory on the basis of the demands of post-Newtonian physics, as he understands them. As a result of relativity theory, the pre-existent geometrical structure of the spatio-temporal environment can no longer be taken for granted; a further result of relativity is the displacement of static material substances by dynamic energetic processes as fundamental to nature. As a result of quantum theory, the activity of this energy must be understood in terms of the definite values achieved by the momentary synergy of rhythmic vibrations, where the emergence of a complete pulse of energy, or organic bud of experience, requires a stretch of time for its unfolding.142 The abstract point-instants of mechanistic materialism, be they Newtonian or Einsteinian, become concrete actual occasions in Whitehead’s reading of the new physics. The discoveries of the 20th century regarding the nature of space, time, and energy are a warning against the misplaced concreteness that would “abstract from change [in an attempt] to conceive the full reality of nature at an instant.”143

By 1920, Whitehead had already published two books exploring the implications of relativity theory for the philosophy of science.144 In June 1921, Whitehead met and had several in depth conversations with Einstein during the latter’s stay with the philosopher and statesman Richard Haldane in London. Accounts offered by those present suggest that Whitehead made several gentle attempts over the course of two days to convince Einstein “to give up his identification of the [curved] geometry of space-time and the physics of gravitation.”145 Einstein admitted he had difficulty grasping Whitehead’s radically novel metaphysical scheme. It was a little more than a year later, in September of 1922, that Whitehead published The Principle of Relativity in an attempt not only to more fully work out the proper philosophical rendering of Einstein’s scientific discovery, but to provide an alternative set of gravitational field equations no longer based on the notion of curved space-time. The book follows on the heals of the famous debate between Einstein and Henri Bergson, which took place in April of 1922 at the Société Française de Philosophie in Paris. At stake in this debate was not only “the status of philosophy vis à vis physics”–that is, it was not only “a controversy about who could speak for nature and about which of these two disciplines would have the last word.”146 It was also a political debate about the proper roles of science and philosophy in society, especially in regard to international relations. Bergson had recently been appointed president of the International Commission for Intellectual Cooperation, a precursor to UNESCO. Einstein, originally a member of the Commission and a vocal supporter of its internationalist mission, would eventually resign, largely as a result of his disagreement with Bergson concerning relativity.147

Bergson’s tremendous popularity prior to confronting Einstein began to wane, probably due to the perception that he was willing to ignore scientific facts if they contradicted his irrational intuitions. This orthodox narrative, retold most recently by the anti-philosophical physicist Alan Sokal,148 has it that Bergson lost the debate because he did not understand the mathematical physics behind relativity. Following the recent revival of interest in Bergsonism,149 the orthodox narrative is increasingly being called into question.150 The specifics of Bergson’s alleged “mistake” regarding the details of Einstein’s twin paradox are beyond the scope of this discussion, but suffice it to say that, contra Sokal and other scientific critics, Bergson was well aware of the observational facts concerning the comparison of different time-systems.151 His critical approach to relativity theory was based on metaphysical, not physical grounds. Like Whitehead, Bergson was not contesting the general physical validity of Einstein’s theory. Rather, Bergson simply wanted to establish, despite Einstein’s protests, that the scientific confirmation of relativity theory was not the end of the matter regarding the philosophical understanding of time.152

Regardless of whether or not Sokal’s criticisms of Bergson’s alleged misunderstandings are justified, he would have a far more difficult case trying to dismiss Whitehead, whose grasp of the mathematical and physical principles at stake arguably surpassed even Einstein’s.153 “The essence of [the structure formed by space-time],” wrote Whitehead in 1922,

is that it is stratified in many different ways by different time-systems. This is a very peculiar idea which is the product of the speculations of the last 15 years or so. We owe the whole conception notably to Einstein… no one can study the evidence in its detail without becoming convinced that we are in the presence of one of the most profound reorganizations of scientific and philosophic thought. But so many considerations are raised, so diverse in character, that we are not justified in accepting blindfolded the formulation of principles which guided Einstein to his forumlae.154

Whitehead set out in his book on relativity to “[carefully scrutinize] the fundamental ideas of physical science in general and of mathematical physics in particular.”155 As discussed earlier, his reaction to the disorienting discoveries of the new physics lead him to re-assess the philosophical foundations of scientific materialism, which had been assumed with great (instrumental) success since the time of Newton. Though Einstein was initially suspicious of philosophy’s role in physics, as is evidenced both by his debate with Bergson and by his signature of a 1913 anti-metaphysical positivist manifesto,156 he came late in life to respect the importance of philosophical reflection upon the conceptual background of science. In his foreword to physicist and philosopher Max Jammer’s historical study of the concept of space, written in 1953, Einstein admits that

…the scientist makes use of a whole arsenal of concepts which he imbibed practically with his mother’s milk; and seldom is he ever aware of the eternally problematic character of his concepts…He uses these conceptual tools of thought as something…immutably given…which is hardly ever…to be doubted. How could he do otherwise? How would the ascent of a mountain be possible, if the use of hands, legs, and tools had to be sanctioned step by step on the basis of the science of mechanics?157

Here, even though Einstein affirms science’s practical need to take its conceptual tools for granted, he he also seems to approach Whitehead’s characterization of philosophy as “the criticism of abstractions which govern special modes of thought.”158 Further, in 1950, Einstein remarked that every genuine physicist “is a kind of tamed metaphysician,” no matter how much lip service he or she may pay to positivism.159 This taming is achieved, according to Whitehead, by holdings one’s “flight in the thin air of imaginative generalization” accountable, upon landing, to “renewed observation rendered acute by rational interpretation.”160 Unfortunately, Einstein’s more mature views on the proper disciplinary relationship between philosophy and physics have still not been fully digested by contemporary materialistic scientists.

In his debate with Bergson, Einstein insisted that no such thing as “philosophical time,” or what Bergson called “duration,” existed; rather, there was the real “physical time” revealed by natural science, and the illusory “psychological time” experienced by human consciousness.161 Whitehead’s unflinching commitment to an organic philosophy of nature prevented him from accepting Einstein’s blatant bifurcation:

It follows from my refusal to bifurcate nature into individual experience and external cause that we must reject the distinction between psychological time which is personal and impersonal time as it is in nature.162

Whitehead differs from Bergson in that he sought to re-construct science itself on an organic basis, whereas Bergson was content to leave science to its mechanical models and instrumental methods. He conceived of science as the result of “intelligence,” rather than “intuition,” meaning that its approach to nature is necessarily mediated by artificial instruments and laboratory techniques; therefore, science can offer no insight into the immediate life of things.163 “For [natural science’s] object,” writes Bergson, “is not to show us the essence of things, but to furnish us with the best means of acting on them.”164 Though Whitehead does not share Bergson’s dualism between the activity of living organisms and the passivity of material mechanisms (since for Whitehead, all sciences are the study of dipolar organismic occasions), he does share his sense that Einstein’s abstract account of relativity in terms of mechanical clock-time obscures the true import of the theory as regards our experience of concrete temporality (i.e., duration). The time of the physicist, as measured by a clock, “merely exhibits some aspects of the more fundamental fact of the passage of nature,” according to Whitehead. “In this doctrine,” he continues, “I am in full accord with Bergson.”165

The agreement between Whitehead and Bergson concerns the way in which concrete temporality is inevitably spatialized in the process of being translated into the abstractions of physics. Mechanical clocks quite literally flatten the passage of time into discrete units of distance meant to represent seconds, minutes, and hours. So far as it goes, such spatialization is necessary for the coordination of civilized life. But it is important not to forget what this translation obscures when we endeavor to understand the creative advance of the actual universe: the clock itself–like everything else in the universe, from carbon atoms to stars to the person who consults it–is aging. To be aging is to be always in process. In a process ontology like Whitehead’s, an actual entity doesn’t “have” an age, as though it were an accidental property of an underlying substance; rather, the very essence of an entity is to age, to emerge out of a definite past and pass into an indefinite future. In Whitehead’s words:

[To discuss]…present fact apart from reference to past, to concurrent present, and to future, and from reference to the preservation or destruction of forms of creation is to rob the universe of essential importance.166

Even a physicist who has mastered all the mathematical formulas and techniques of measurement cannot avoid the philosophical quandaries which arise from a moment’s reflection upon the fact that his or her conscious presence is necessary in order for the clock, or any measuring instrument, to get itself read.167 Our direct experience of concrete existence–whether we are artists, clergymen, homemakers, or astrophysicists–reveals nature to be an irreversible process of becoming, a creative advance. This fact stands in sharp contrast to Einstein’s incredible remark:

For us believing physicists, the distinction between past, present, and future is only an illusion, even if a stubborn one.168

The philosopher Niels Viggo Hansen boils down what is at stake in the debate between Einstein, Bergson, and Whitehead by asking about the meaning of “fact,” both as it is assumed in our concrete (temporal) experience of a specious present, and as it is assumed in the abstract (spatialized) notations of physics:

If there is any such thing as a fact…then either there are temporal facts (e.g., that you have already read the previous sentence) or there are atemporal facts (e.g., that your reading of it is later than my writing of it)…Bergson was right that…we cannot seriously hold at the same time both that there are concrete facts involving distant simultaneity, and also that such facts cannot exist in the physical universe. Surely one could claim that such immediate facts are eliminated in the production of physical descriptions…but if concrete facts of co-presence are there before clocks…are used, they will still be there in the background when [clocks] are employed.169

Where Bergson goes wrong, according to Hansen, is in claiming that our concrete experience of co-presence, or durational simultaneity, is somehow universal. It is as if he claims to have some special intuitive access to what is happening right now on the surface of Mars, even though all the theoretical and experimental evidence of relativistic physics suggests that distant happenings are not instantaneously communicated to our concrete experience.170 Whitehead’s novel solution to this paradox regarding the irreconcilable notions of “fact” is to construe the concrete simultaneity of an actual occasion’s specious present as a local, rather than a global, fact. Such a construal entails rejecting the often implicit ontologization of the Einsteinian notion of a ready-made 4-dimensional fabric of space-time “out there” within which actual occasions would unfold, or through which the plane of the present would slide as an indication of global simultaneity (as Bergson seems to have believed171). Actual occasions are not to be pictured as if they were bits of matter located in a pre-given spatiotemporal “loaf”; rather, the abstract geometry of space-time described by the Lorentz transformations, or by Whitehead’s alternative tensor equations,172 is derivative from the most general pattern of experience realizable by the actual occasions constitutive of our cosmic epoch. In other words, the geometry of curved space-time itself emerges from the character, taken collectively, of individual drops of experience. These self-creating and other-prehending drops of experience are the final real things of which reality is composed. These processes are what is concrete, while space-time is an abstraction from the concrete. “Whitehead is explicit about the idea,” writes Hansen,

that the concrete dynamism of processes can be understood as the ground of extension rather than the reverse. This is the first element of the Whiteheadian solution to the tension between extension and becoming: the modalities are not really situated in space and time at all, but in the concrete processes whose web of relations gives rise to space and time.173

Metaphysically speaking, that space-time is abstract doesn’t mean it isn’t real, only that it isn’t actual. Space-time is a system of modalities, a configuration of forms, or, in Whitehead’s terms, a definite patterning of eternal objects that has ingressed into the prehensive unifications of actual occasions. Eternal objects, as discussed earlier, have a relational function: their ingression allows for the solidarity, or extensive continuity, of the universe by providing actual occasions with the definite adverbial “how?” characterizing their prehensions of other occasions. This “two-way function” shapes both the private experience, or “subjective form,” of an occasion, and grants this form publicity, so as to offer it as an objective datum for the larger society of occasions within which the occasion becomes and perishes.174 Among the most fundamental set of adverbs characterizing the “how?” of the mutual prehensions of our cosmic epoch is the system of geometrical modalities known to physics as space-time. Also among the most fundamental set of adverbs are the mathematical fields of force known to physics as gravity and electromagnetism.175

These mathematical relations belong to the systematic order of extensiveness which characterizes the cosmic epoch in which we live. The societies of [organisms]–electrons, protons, molecules, material bodies–at once sustain that order and arise out of it. The mathematical relations involved…thus belong equally to the world perceived and to the nature of the percipient. They are, at the same time, public fact and private experience.176

Whitehead’s reference to our “cosmic epoch” is important, since it is a reminder that the 4-dimensional character of space-time as we experience and measure it today is contingent and could change as the creative advance of the universe continues to unfold. The “laws” of nature, and the structure of space-time, are not eternal, nor necessarily universal.177 They are the result of widespread, habitual forms of organization achieved by the mutual prehensions of the most encompassing society of actual occasions which communicate with our experience.178 “How do we know,” asks Whitehead, “that only one geometry is relevant to the complex happenings of nature?” He continues:

…this planet, or this nebula in which our sun is placed, may be gradually advancing towards a change in the general character of its spatial relations. Perhaps in the dim future mankind, if it then exists, will look back to the queer, contracted three-dimensional universe from which the nobler, wider existence has emerged.179

The cosmic habits called “laws of nature” by contemporary physicists are extremely stable relative to the individual novelty achievable by high-grade, conscious occasions (like multicellular animals) because they are derived from the decisions of very simple, low-grade actual occasions (like electrons). The “mental pole” of these occasions is negligible: they are statistically dominated by the habitual “physical feelings” of their environment, and so almost always reproduce the systematic order of the eternal objects characterizing that environment with little in the way of autonomous flashes of creativity.180

To sum up, Whitehead’s reformed principle of relativity is based on the metaphysical priority of actual facts, or occasions of experience, from which the geometrical order of spatiotemporal extension is derived.181 Through an abstractive process of logical construction rooted in the coordination of the somewhat fragmentary nature of individual occasions of experience, the general character of space-time holding true for our cosmic epoch can be produced.182 While Einstein’s proposal of a universal and a priori space-time implies a taut, already fully woven fabric whose spatial curvature is modified by the material bodies situated within it, Whitehead’s alternative theory of a coordinated plurality of space-times implies a fraying fabric always in the process of being repaired by the dipolar physical-mental concrescences of organismic occasions of experience. In this sense, Whitehead translates many of the properties that Einstein’s general relativity defines a priori into empirical, or a posteriori facts.183 Instead of privileging the misplaced concreteness of an abstract space-time that would “[separate] an organism from its environment” such that “the endurance of the former and the patience of the latter [is defined] in terms of right [or “law”], not of fact,” Whitehead emphasizes the contingency of the evolved habits currently holding sway over the ecology of organisms shaping our cosmic epoch, no matter how general or universal they may appear at this time.184

Whitehead terms the general character of space-time “the uniformity of the texture of experience.”185 “The physical world [i.e., the extensive continuum of space-time],” he goes on, is,

in some general sense of the term, a deduced concept. Our problem is, in fact, to fit the world to our perceptions, and not our perceptions to the world.186

Here, Whitehead directly contradicts Einstein’s famous statement that our immediate experience of temporality, while perhaps necessary for civilized life, is in reality nothing but a persistent illusion no longer to be believed in by professional physicists. Whitehead’s reconstruction of relativity theory so as to avoid the social and ecological perils of the bifurcation of nature is not based on a denial of Einstein’s physical formulations, but a denial of the unconscious imaginative background shaping Einstein’s metaphysical interpretation of these formulations. Following Stengers, it can be said that Whitehead’s philosophy of organism aims not to belittle or deny the abstractions of the scientific intellect, as Bergson seems to, but rather to articulate an

ecology of abstraction…that creates the possibility of a mutual aesthetic appreciation between specialists of precision and adventurers of generalization.187


141 Stengers, Thinking With Whitehead, 168-169.

142 Whitehead, Science and the Modern World, 122.

143 Whitehead, Modes of Thought, 145.

144 An Enquiry Concerning the Principles of Natural Knowledge (New York: Dover Publications, 1919/1982) and The Concept of Nature (Cambridge: Cambridge University Press, 1920/1964).

145 Ronald Desmet, “Did Whitehead and Einstein Actually Meet?” in Researching With Whitehead: System and Adventure, eds. Franz Riffert and Hans-Joachim Sander (Freiburg: Verlag Karl Alber, 2008), 154.

146 Jimena Canales, “Einstein, Bergson, and the Experiment that Failed: Intellectual Cooperation at the League of Nations,” in Modern Language Notes, Vol. 120 (Baltimore: Johns Hopkins University Press, 2005), 1169; http://www.fas.harvard.edu/~hsdept/bios/docs/canales-Einstein,%20Bergson%20and%20the%20Experiment%20that%20Failed.pdf (accessed 11/18/2012).

147 Canales, “Einstein, Bergson, and the Experiment that Failed,” 1175.

148 See Sokal and Jean Bricmont. Intellectual Impostures: Postmodern Philosophers’ Abuse of Science (London: Profile Books, 1998).

149 Largely a result of the influence of Gilles Deleuze (see http://plato.stanford.edu/entries/bergson/#7 [accessed 11/18/2012]).

150 See Canales (2005) and Val Dusek’s review of Sokal’s Intellectual Impostures in the journal Metascience, Vol. 9, Issue 3 (2000); http://www.physics.nyu.edu/sokal/dusek.html (accessed 11/18/2012).

151 See Canales, “Einstein, Bergson, and the Experiment that Failed,” 1170-1171.

152 Bergson, “Discussion avec Einstein,” in Mélanges (Paris: Presses Universitaires de France, 1972), 1345.

153 “Professor Whitehead seems to me to have brought out the character of space and time in his treatment of relativity more thoroughly than Einstein or even Minkowski himself has done” -Richard Haldane, The Reign of Relativity (New Haven: Yale University Press, 1921), 110. See also letters exchanged between Einstein and his first wife Mileva Einstein-Maric, herself an accomplished mathematician, which suggest that Einstein required her help with some of the more difficult aspects of his equations (“Did Einstein’s Wife Contribute to His Theories?”, in New York Times [March 27, 1990]; http://www.nytimes.com/1990/03/27/science/did-einstein-s-wife-contribute-to-his-theories.html [accessed 11/18/2012]).

154 Whitehead, The Principle of Relativity, 59, 67.

155 Whitehead, The Principle of Relativity, 40.

156 Stanley Jaki, The Road of Science and the Ways to God (Edinburgh: Scottish Academic Press, 1978), 182.

157 Einstein, Foreward to Max Jammer, Concepts of Space: The History of Theories of Space in Physics (Mineola: Dover, 1993), xiii-xiv.

158 Whitehead, Modes of Thought, 49.

159 Einstein, “On the Generalized Theory of Gravitation,” in Scientific American, Vol. 182, Issue 4, April 1950.

160 Whitehead, Process and Reality, 5.

161 Bergson, “Discussion avec Einstein,” 1346

162 Whitehead, The Principle of Relativity, 66.

163 C. F. Delaney, “Bergson on Science and Philosophy, in Process Studies, Vol. 2, Issue 1 (1972), 29-43.

164 Henri Bergson, Creative Evolution (New York: Henry Holt and Company, 1911), 93.

165 Whitehead, The Concept of Nature, 54.

166 Whitehead, Modes of Thought, 84.

167 See Canales, “Einstein, Bergson, and the Experiment that Failed,” 1176-1177.

168 Einstein to Vero and Mrs. Bice, March 21, 1955. Einstein Archive, reel 7-245; reprinted in Albert Einstein-Michele Besso Correspondence 1903-1955 (Paris: Harmann, 1972), 537-538.

169 N. V. Hansen, “Spacetime and Becoming: Overcoming the Contradiction Between Special Relativity and the Passage of Time,” in Physics and Whitehead: Quantum, Process, and Experience, ed. Timothy Eastman and Hank Keeton (New York: State University of New York, 2003), 150.

170 It takes anywhere between 4 and 20 minutes for light to travel from Mars to Earth, depending on our relative orbital locations. It is important to note here that the non-local effects of quantum physics makes the issue of instantaneous communicability more complicated. I explore this issue below, but suffice it to say for now that Whitehead’s account of the ingression of eternal objects into actual occasions allows for a coherent integration of the relativistic limits placed on efficient causality with the non-local formal causality of quantum physics.

171 See Gilles Deleuze, Bergsonism, transl. Hugh Tomlinson and Barbara Habberjam (New York: Zone Books, 1991), 82.

172 See Whitehead, The Principle of Relativity, 139cf.

173 Hansen, “Spacetime and Becoming,” 154.

174 Whitehead, Process and Reality, 164.

175 Unlike Einstein, whose conception of a ready-made “fabric” of space-time allowed him to explain gravity as a pseudo-force which really results from the warping of the fabric due to presence of massive objects, Whitehead described gravity as a genuine physical force, like electromagnetism (Whitehead, The Principle of Relativity, 91cf).

176 Whitehead, Process and Reality, 326.

177 Stengers, Thinking With Whitehead, 168.

178 Whitehead, Process and Reality, 98.

179 Whitehead, Modes of Thought, 57.

180 Whitehead, Process and Reality, 245.

181 Epperson, Quantum Mechanics, 5.

182 Whitehead, “Space, Time, and Relativity,” in The Aims of Education (New York: The Free Press, 1929/1957), 162-163.

183 Stengers, Thinking With Whitehead, 168.

184 Stengers, Thinking With Whitehead, 169.

185 Whitehead, “Space, Time, and Relativity,” 163.

186 Whitehead, “Space, Time, and Relativity,” 165.

187 Stengers, Thinking With Whitehead, 141.